Copied to
clipboard

G = C2×C42⋊C9order 288 = 25·32

Direct product of C2 and C42⋊C9

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×C42⋊C9, C423C18, (C2×C42)⋊C9, (C4×C12).3C6, C6.2(C42⋊C3), (C22×C6).8A4, C23.4(C3.A4), (C2×C4×C12).C3, C3.(C2×C42⋊C3), (C2×C6).5(C2×A4), C22.1(C2×C3.A4), SmallGroup(288,71)

Series: Derived Chief Lower central Upper central

C1C42 — C2×C42⋊C9
C1C22C42C4×C12C42⋊C9 — C2×C42⋊C9
C42 — C2×C42⋊C9
C1C6

Generators and relations for C2×C42⋊C9
 G = < a,b,c,d | a2=b4=c4=d9=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc-1, dcd-1=b-1c2 >

3C2
3C2
3C4
3C22
3C4
3C22
3C4
3C4
3C6
3C6
16C9
3C2×C4
3C2×C4
3C2×C4
3C2×C4
3C2×C4
3C2×C4
3C2×C6
3C12
3C12
3C12
3C2×C6
3C12
16C18
3C22×C4
3C42
3C2×C12
3C2×C12
3C2×C12
3C2×C12
3C2×C12
3C2×C12
4C3.A4
3C4×C12
3C22×C12
4C2×C3.A4

Smallest permutation representation of C2×C42⋊C9
On 36 points
Generators in S36
(1 12)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 10)(9 11)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)
(1 23 12 32)(2 13)(3 25 14 34)(4 26 15 35)(5 16)(6 19 17 28)(7 20 18 29)(8 10)(9 22 11 31)(21 30)(24 33)(27 36)
(1 32 12 23)(2 24 13 33)(4 35 15 26)(5 27 16 36)(7 29 18 20)(8 21 10 30)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,10)(9,11)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,23,12,32)(2,13)(3,25,14,34)(4,26,15,35)(5,16)(6,19,17,28)(7,20,18,29)(8,10)(9,22,11,31)(21,30)(24,33)(27,36), (1,32,12,23)(2,24,13,33)(4,35,15,26)(5,27,16,36)(7,29,18,20)(8,21,10,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)>;

G:=Group( (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,10)(9,11)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,23,12,32)(2,13)(3,25,14,34)(4,26,15,35)(5,16)(6,19,17,28)(7,20,18,29)(8,10)(9,22,11,31)(21,30)(24,33)(27,36), (1,32,12,23)(2,24,13,33)(4,35,15,26)(5,27,16,36)(7,29,18,20)(8,21,10,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36) );

G=PermutationGroup([[(1,12),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,10),(9,11),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36)], [(1,23,12,32),(2,13),(3,25,14,34),(4,26,15,35),(5,16),(6,19,17,28),(7,20,18,29),(8,10),(9,22,11,31),(21,30),(24,33),(27,36)], [(1,32,12,23),(2,24,13,33),(4,35,15,26),(5,27,16,36),(7,29,18,20),(8,21,10,30)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)]])

48 conjugacy classes

class 1 2A2B2C3A3B4A···4H6A6B6C6D6E6F9A···9F12A···12P18A···18F
order1222334···46666669···912···1218···18
size1133113···311333316···163···316···16

48 irreducible representations

dim11111133333333
type++++
imageC1C2C3C6C9C18A4C2×A4C3.A4C42⋊C3C2×C3.A4C2×C42⋊C3C42⋊C9C2×C42⋊C9
kernelC2×C42⋊C9C42⋊C9C2×C4×C12C4×C12C2×C42C42C22×C6C2×C6C23C6C22C3C2C1
# reps11226611242488

Matrix representation of C2×C42⋊C9 in GL3(𝔽13) generated by

1200
0120
0012
,
800
050
001
,
1200
050
005
,
009
1200
0120
G:=sub<GL(3,GF(13))| [12,0,0,0,12,0,0,0,12],[8,0,0,0,5,0,0,0,1],[12,0,0,0,5,0,0,0,5],[0,12,0,0,0,12,9,0,0] >;

C2×C42⋊C9 in GAP, Magma, Sage, TeX

C_2\times C_4^2\rtimes C_9
% in TeX

G:=Group("C2xC4^2:C9");
// GroupNames label

G:=SmallGroup(288,71);
// by ID

G=gap.SmallGroup(288,71);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,50,514,360,3476,102,3036,5305]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^4=d^9=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^-1,d*c*d^-1=b^-1*c^2>;
// generators/relations

Export

Subgroup lattice of C2×C42⋊C9 in TeX

׿
×
𝔽